2019-04-10

Моделирование


Здесь в математике разработана специальная технология, которая, в применении к реальному миру, иногда полезна, а иногда может приводить и к самообману. Эта технология называется моделированием. При построении модели происходит следующая идеализация: некоторые факты, известные лишь с некоторой долей вероятия или лишь с некоторой точностью, признаются «абсолютно» верными и принимаются за «аксиомы». Смысл этой «абсолютности» состоит ровно в том, что мы позволяем себе оперировать с этими «фактами» по правилам формальной логики, объявляя «теоремами» всё то, что из них можно вывести.

Понятное дело, что ни в какой реальной деятельности полностью полагаться на подобные дедукции невозможно. Причиной является хотя бы то, что параметры изучаемых явлений никогда не бывают известными нам абсолютно точно, а небольшое изменение параметров (например, начальных условий процесса) может совершенно изменить результат. Скажем, по этой причине надёжный долгосрочный динамический прогноз погоды невозможен и останется невозможным, сколь бы ни совершенствовались компьютеры и регистрирующие начальные условия датчики.

Совершенно таким же образом небольшое изменение аксиом (в которых ведь мы точно уверены быть не можем) способно, вообще говоря, привести к иным выводам, чем дают выведенные из принятых аксиом теоремы. И чем длиннее и искуснее цепь выводов («доказательств»), тем менее надёжен окончательный результат.

Сложные модели редко бывают полезными (разве что для диссертантов).

Математическая технология моделирования 
состоит в том, чтобы от этой неприятности отвлечься и говорить о своей дедуктивной модели так, как если бы она совпадала с реальностью. Тот факт, что этот — явно неправильный с точки зрения естествознания — путь часто приводит к полезным результатам в физике, называют «непостижимой эффективностью математики в естественных науках» (или «принципом Вигнера»).

Здесь можно добавить замечание, принадлежащее И. М. Гельфанду: существует ещё один феномен, сравнимый по непостижимости с отмеченной Вигнером непостижимой эффективностью математики в физике — это столь же непостижимая неэффективность математики в биологии.

Komentarų nėra: