2019-04-13
Tai Pro Kur Oras?
Kai kandidatavau šian Seiman, kai VRK klastojo mano biografiją, o dabartinė VRK pirmininkė įkyriai reikalavo žodžio „prokuratūra" atstatytoje biografijoje atsisakyti, o, kai tik sutikau, mano senojo gerojo Peugeot 605 priekinio kairiojo rato visi penki varžtai atsisuko vos keletą kilometrų tenuvažiavus, ir tik Apvaizdos dėka neišlėkiau „prieš eismą", taipogi padariau dar vieną dalyką: kreipiaus į Lietuvos Generalinę prokuratūrą dėl Itin Degių Lietuvos Respublikos piliečių žūties tyrimo atnaujinimo.
Pro Kur Oras?
Kaip tik 2016-ji, rinkimų Seiman metai,
kai Lietuvos Generalinė prokuratūra neatsakė į šį mano raštą:
Neteisinė valstybė?
O ką gi dar turėčiau galvoti?
2019-04-12
Jews And The Moon
Many eons ago in the ancient world, the Jews adopted the moon as the basis of the Hebrew calendar. Only isolated groups, such as members of the Judean desert cults, attempted to build the Jewish calendar around the sun but all such attempts ended with the destruction of the Second Temple, and the lunar calendar was universally accepted as the Jewish calendar.
The moon emerged as the undisputed victor in the battle for the Jewish perspective of time. While the days in Jewish culture are determined by the sun – from sunset to sunset – the calculation of the days into months depends on the “birth” of the moon.
While the pagans regarded the moon as a god in its own right, the moon’s central function in Judaism is expressed not only in the calculation of the months but also in the blessing recited at the beginning of each Jewish month – ‘Birkat HaLevana’ [the ‘Blessing of the Moon’]. The blessing praises the one God, the Holy One Blessed Be He, creator of all natural phenomena.
This also seems to be the reason that, throughout the generations, Jews drew the moon with human features, as it is considered a natural phenomenon created by God and therefore not a transgression of the prohibition against making idols or graven images.
Why Israel botched its first attempted moon landing | DW New:((
Pro Kur Oras?
2019 m. kovo 20 d. Teisingumo ministerija pradeda nacionalinę kandidatų į Europos prokurorus atranką.
Europos prokurorai paskiriami 6 metų kadencijai, kuri negali būti pratęsta.
Tačiau ES Taryba gali nuspręsti įgaliojimus pratęsti ne ilgesniam kaip 3 metų terminui.
Europos prokuratūra, kurios būstinė bus Liuksemburge, darbą pradės 2020 m. pabaigoje.
Liuksemburgas yra LABIAUSIAI PRASISKOLINUSI PASAULIO VALSTYBĖ.
Rank | Country/Region | External debt US dollars | Date | Per capita US dollars | % of GDP |
---|---|---|---|---|---|
1 | ![]() | 1.62846×1013 | December 2017 | 58,200 | 115 |
2 | ![]() | 8.475956×1012 | 31 December 2017[1] | 127,000 | 313 |
3 | ![]() | 5.689745×1012 | 31 December 2017[2] | 87,200 | 213 |
4 | ![]() | 5.398267×1012 | 31 December 2017[3] | 65,600 | 141 |
5 | ![]() | 4.5104×1012 | 31 December 2017[4] | 26,400 | 522 |
6 | ![]() | 3.781×1012 | 31 December 2017[5] | 6,968,000 | 6,307 |
7 |
2019-04-11
Он Напал:))
Куда попёр?
:)))
© :
Prisikabinau prie gerb.G.Vilpišausko klaidos (mano galva) jo puikioje naujoje knygoje. Vieną geriausių ryžių rūšį plovui jis vadina Lazar. O aš protestavau, nes aiškiai prisiminiau savo šių metų vasarą Taškente ir net turiu fotografiją iš Mirabado turgaus Taškente, kur ryškiai spausdintomis raidėmis - Lazer.
Tada Vilpišauskas rado ir pateikė nuorodą, kur tie ryžiai vadinami netgi Lazarj. Kaip Biblijos personažo Lozoriaus. Ir tvirtino tame pačiame Taškente matęs ryžius turguje su užrašu Lazar.
Ta proga buvau priverstas aršiau pasikapstyti po Taškento paslaptis. Ir pasirodo mes abu neteisūs.
Kaipgi yra iš tikrųjų?
Sovietų laikais Taškento ryžių selekcijos institutas išvedė naują ryžių rūšį. Siuntė atrinktas sėklas į Kubą, tie ten augino ir darė savo selekciją ir sėklas siuntė atgal į Taškentą. Ir taip kelis kartus. Pavyko kubiečiams su uzbekais išburti naują ryžių rūšį labai tinkamą plovui, bet su viena ypatybe. Jei geriausi ploviniai Devzira ryžiai yra raudonoko atspalvio, tai ši naujoji rūšis turėjo šiek tiek žydro atspalvio. Todėl sovietiniai uzbekų selekcininkai ir pavadino tuos ryžius Lazurnyj. Toks yra oficialus šios ryžių rūšies pavadinimas. Tai pirmoji paslapties dalis.
Antroji paslapties dalis ta, kad uzbekų ryžių augintojai, neišsilavinę dechkanai, tokių ilgų sudėtingų pavadinimų svetima kalba kaip Lazurnyj tiesiog negeba nei parašyti, nei ištarti. Todėl sutrumpino pavadinimus iki trumpų kažkur girdėtų – Lazer, Lazar, Lazarj.
Ryškus uzbekų polinkio gramatinėms klaidoms pavyzdys iš to pačio turgaus - Napoleono tortas...
Dvi klaidos arba Taškento paslaptys
Ech...
Приходит узбек домой, а жена его спрашивает: Как дела, Умар?
Он говорит: Плохой день у меня сегодня, Зульфия. В партию меня не приняли.
- Как не приняли?
- Спросили, состоял ли я в банде Кур-баши, я сказал что да, и не приняли.
- А зачем правду сказал, мог бы и скрыть!
- Как мог скрыть? Сам Кур-баши спрашивал.
„Startuolis Vienaragis" Japonijoj
Bloomberg
Yuji Nakamura,
2019 m. balandžio 11 d. 05:30
„Liquid Group Inc.“, Tokijuje įsikūrusi kriptovaliutos prekybos platforma, trečiadienį publikavo pranešimą spaudai, kuriame teigia pritraukusi virš milijardo dolerių rizikos kapitalo fondų, taip tapdama viena iš nedaugelio vadinamųjų startuolių vienaragių (angl. unicorn company) Japonijoje.
Ech, kokios mes
greitos:
tik 8-niom dienom tevėluojam!
Pranašus
Išklausykit!
2019-04-10
Моделирование
Здесь в математике разработана специальная технология, которая, в применении к реальному миру, иногда полезна, а иногда может приводить и к самообману. Эта технология называется моделированием. При построении модели происходит следующая идеализация: некоторые факты, известные лишь с некоторой долей вероятия или лишь с некоторой точностью, признаются «абсолютно» верными и принимаются за «аксиомы». Смысл этой «абсолютности» состоит ровно в том, что мы позволяем себе оперировать с этими «фактами» по правилам формальной логики, объявляя «теоремами» всё то, что из них можно вывести.
Понятное дело, что ни в какой реальной деятельности полностью полагаться на подобные дедукции невозможно. Причиной является хотя бы то, что параметры изучаемых явлений никогда не бывают известными нам абсолютно точно, а небольшое изменение параметров (например, начальных условий процесса) может совершенно изменить результат. Скажем, по этой причине надёжный долгосрочный динамический прогноз погоды невозможен и останется невозможным, сколь бы ни совершенствовались компьютеры и регистрирующие начальные условия датчики.
Совершенно таким же образом небольшое изменение аксиом (в которых ведь мы точно уверены быть не можем) способно, вообще говоря, привести к иным выводам, чем дают выведенные из принятых аксиом теоремы. И чем длиннее и искуснее цепь выводов («доказательств»), тем менее надёжен окончательный результат.
Сложные модели редко бывают полезными (разве что для диссертантов).
Математическая технология моделирования
состоит в том, чтобы от этой неприятности отвлечься и говорить о своей дедуктивной модели так, как если бы она совпадала с реальностью. Тот факт, что этот — явно неправильный с точки зрения естествознания — путь часто приводит к полезным результатам в физике, называют «непостижимой эффективностью математики в естественных науках» (или «принципом Вигнера»).
Здесь можно добавить замечание, принадлежащее И. М. Гельфанду: существует ещё один феномен, сравнимый по непостижимости с отмеченной Вигнером непостижимой эффективностью математики в физике — это столь же непостижимая неэффективность математики в биологии.
„Gyvoji Matematika", 2019 m. balandžio 16 d., VGTU
Laba diena.
Pranešu, kad 2019.04.16 9:00 SRL-I 420 vyks seminaras (anotacija prisegta).
Pranešėjai – Eugenijus Paliokas ir Alanas Petrauskas.
Pavadinimas: Gyvoji matematika, arba kodėl reikalinga matematikos dėstymo revoliucija.
Pagarbiai
Anastasija Antul
Administratorė
Matematinio modeliavimo katedra
Fundamentinių mokslų fakultetas
Vilniaus Gedimino technikos universitetas
tel.: +370 52 74 4827, viet. 9827
Saulėtekio al. 11, SRL-I 402 kab.
„Gyvoji matematika, arba kodėl reikalinga matematikos dėstymo revoliucija“
Eugenijus Paliokas, Alanas Petrauskas*
I.M.Gelfandas, papildydamas E.Vignerio pastabą apie stebėtiną matematikos efektyvumą fizikoje, nurodė ne mažiau stebėtiną matematikos neefektyvumą biologijoje.
Kaip to išvengti?
Mokyti “nuo kito galo” – iškart paaiškinant bendrą pasaulio dualizmą: kad viskas vienu metu Akivaizdu ir Paslaptinga, Santykina ir Absoliutu, Natūralu ir Kompleksiška. Kiekvienas skaičius – kaip ir kiekvienas gyvenimo reiškinys – turi dvi puses: realią (”matomą”) ir menamą (“nematomą”). Kompleksiniai skaičiai parodo, kad viskas paprasta ir natūralu, o paprasti natūriniai skaičiai - kad viskas kompleksiška ir sudėtinga. Menamosios dalies dydis kompleksinėje plokštumoje siejamas su mūsų "dvasinėmis pastangomis pamatyti nematomą"; status polinių koordinačių toje plokštumoje kampas gali būti siejamas tik su dvasine (nematoma) plotme, visi kiti - su „dvasinės ir materialios“ plotmių kombinacijomis.
Visko esmė yra Priešybių Vienybėje – t.y. matomo ir nematomo apjungime. Taip gauname ne tik kompleksinius skaičius, bet ir funkcijas, per kurias galime paaiškinti naujos gyvybės atsiradimą. Jei priešybių niekas neriša "iš vidaus" (vidinėmis sąsajomis), tada jų suma yra "negyva", t.y. 1 + 1 = 2. Bet jei kažkas riša, tada nebebūtinai šitaip, o 1 + 1 > 2.
Matematika dažnai prasminga, tik tada, kai kalbam apie ne itin pažįstamus objektus, kuriuos galim laikyti absoliučiai vienodais ir nesąveikaujančiais (t.y., neturinčiais menamųjų koordinačių, negyvais). Realybėje viskas vienoda, tik kai “žiūrim iš toli”, o kai susipažįstam iš arčiau, tai pamatom tokius didžiulius skirtumus, kad skaičiavimas beprasmis.
Panašiai ir su negyvais objektais. Štai pieštukas erdvėje – tai vienas, bet pati erdvė aplink pieštuką – jau du. Reiškia, 1 = 2. Homogeninis vanduo – tai vienas (nes visi taškai vienodi), bet jei atsiranda sūkurinis judėjimas – tai jau du (sūkurio centras ir periferija)… Dar daugiau, erdvinį kūną galima suskaidyt į baigtinį dalių skaičių, taip kad iš tų pačių dalių surinksim jau du pradinius kūnus (Banach-Tarski paradox)… Taip parodom, kad skaičiavimas be pajautimo yra beprasmis.
Senovės filosofijoje tai buvo vadinama „mąstymu galva ir širdimi“**.
* Alanas Petrauskas yra chemijos mokslų daktaru tapęs Tarybų Sąjungos chemijos olimpiadų nugalėtojas.
Mokslininkas Alanas PETRAUSKAS diskusijoje apie miškus - MOKSLAS APTARNAUJA PRIMITYVESNĘ SĄMONĘ?
**
P.S. Kaip jau buvo, taip ir buvo.
Обучение Математике - Обучение Очковтирательству?
В.И. Арнольда
МГУ, 13 октября 2005 года
Лекция
В. И. Арнольда
В рамках Лектория МГУ
13 октября перед университетской аудиторией выступил академик, президент Московского математического общества Владимир Игоревич Арнольд с лекцией «Экспериментальная математика и обучение ей». Впервые прослушав выступление Арнольда, посвященное вопросам математики, появляется желание разобраться в его дискуссии с миром математиков подробнее. Начав поиск со статей Владимира Игоревича о математике и закончив уже областью его научных интересов, убеждаешься, что Арнольд – личность мирового масштаба. Не то, чтобы это не казалось очевидным ранее, вовсе нет, а потому, что вещи, о которых говорил Владимир Игоревич на лекции, если и приходилось слышать дотоле, то не из первых рук. Пусть про проблемы преподавания математики в мире он и говорит не первый год, но, по крайней мере, его выступления всегда пополняются новыми примерами и, зачастую, из его личного опыта.
Любопытно, что выступать перед российской публикой, рассуждая о проблемах математики, он стал не так давно. А если говорить про лекцию, о которой сегодня идет речь, то она вообще впервые была прочитана российским коллегам. По словам Владимира Игоревича, написана она была на английском, прочитана на французском, а предназначалась для выступления 15 июня этого года перед аудиторией двух парижских университетов. Но, вернувшись в Москву, он вдруг прочитал в российской печати заявления авторитетных лиц о том, что «математика – не наука, потому что она никакого отношения к реальному не имеет.» И если ранее Арнольд считал, что с математикой в нашей стране все нормально, то сейчас появляются примеры, говорящие о том, что некоторые важные математические факты исчезают из российского образования. Какие именно, – этому Владимир Игоревич и посвятил свое выступление 13 октября в МГУ. Надо сказать, что в этот вечер собрались преимущественно ученые-математики, коллеги и соратники академика, для которых предмет разговора был очень близок и понятен.
В.И. Арнольд начал с давних споров с французскими учеными о предмете математика и о методах ее преподавания: «Основной предмет спора был в том, что я утверждал: математиком может быть только тот, кто знает, что . Французы утверждают: это знание совершенно излишне, учить надо тому, что , а 56 – это ерунда». Продолжая свою речь, академик добавил, что в недавней дискуссии с французами он пытался показать, что не только 56 важно, но еще и ряд других простых фактов, о которых те забывают.
Похожий пример академик Арнольд приводил еще в 2000 году в своих выступлениях и интервью. «Французского школьника спросили: "Сколько будет два плюс три?" И этот отличник изрек: "Два плюс три будет столько же, сколько три плюс два, потому что сложение коммутативно..." У него был компьютер, и преподаватель в школе научил им пользоваться, но суммировать "два плюс три" в уме парень не мог. Министр был потрясен и предложил убрать из всех школ преподавателей, которые учат детей компьютеру, а не математике».
Вернемся к лекции в Московском университете. Продолжая выступление, Арнольд напомнил своим коллегам перевод слова математика. Оно означает «точное знание», и единственной страной, которая пользуется данным переводом на свой язык, является Голландия. Большинство же других стран использует греческое mathematike.
На этот раз академик много времени посвятил полезности двух основных методов мышления: индукции и дедукции. Индукция – это переход от частного к общему. Дедукция – это переход от общего к частному. «Лейбниц писал, что именно дедукция есть отличие человека от животного, и на почве этого основал свое математическое доказательство бытия божьего … Есть общий закон, есть частный случай. Надо применить частный случай и получить правильный вывод. Например, закон «не убий». Вывод: даже очень надоевшую жену нельзя убить».
Однако Арнольд сказал про Лейбница, что тот был настоящим философом, но не был математиком, поэтому вся его математика – «сплошное вранье». В пример академик привел ошибочную формулу d(uv)=dudv, которую Лейбниц методом дедукции получил из верной d(u+v)=du+dv. «Лейбниц рассуждал дедуктивно: он доказал, что производная от суммы равна сумме производных, и заключил, что дифференцирование есть гомоморфизм абелевой группы, а значит и кольца, то есть производная от произведения есть произведение производных, что неверно». Арнольд потом пояснил, что Лейбниц все же исправил ошибку.
«В действительности же, рассуждая индуктивно, а не дедуктивно, мы немедленно делаем замечательные выводы!» – сказал Арнольд, а для иллюстрации привел два примера, полученных индуктивным методом и представляющие собой интересные факты. Первый касается прямого произведения границ многогранников, а второй есть некая «формула рыбака». Оба примера лектор подробно пояснил слушателям.
Возвращаясь к вопросу использования дедуктивного метода, Арнольд сформулировал метод Сильвестра – некий общефилософский принцип, согласно которому «доказательство общих фактов гораздо проще, чем доказательство частных случаев, которые в них содержатся». Арнольд сказал, что Бурбаки основываются именно на том, чтобы не излагать частные случаи, а доказывать общие. Бурбаки использовали этот метод Сильвестра, однако никогда на него не ссылаются.
Бурбаки – псевдоним, под которым группа математиков во Франции предприняла (начиная с 1939 г.) попытку изложить различные математические теории с позиций формального аксиоматического метода (многотомный трактат «Элементы математики»). Возможно, стоит сказать, что полемика Арнольда с Бурбаками идет давно, чтобы это понять, достаточно прочитать статью «Математическая дуэль вокруг Бурбаки», напечатанную в 2002 году в Вестнике РАН. Эта довольно интересная, даже полезная в некотором смысле статья помогает лучше разобраться в том, что творится в мире высокой математике и какие противоречия она в себе совмещает (прим. автора).
Из многочисленных фактов истории науки, приведенных на лекции, уважаемый математик Арнольд, видимо, стремился показать аудитории, что, несмотря на общепризнанность метода дедукции, тот порою ошибочен, когда как метод индукции приводит не только к важным выводам, но и очень полезен для саморазвития маслящего.
Примеры математического мышления и полезного индуктивного метода Владимир Игоревич привел из мировой литературы. «В «Исповеди» Авраам Руссо пишет, как его учили открывать скобки на уроках алгебры. Когда он научился открывать скобки, то нашел, что квадрат суммы равен сумме квадратов увеличенной на удвоенное произведение слагаемых. Но эта формула показалась ему настолько удивительна, что он месяц не верил, что правильно раскрыл скобки, пока не нашел понятного доказательства: разрезал большой квадрат на четыре прямоугольника, два из них квадраты – так и получил доказательство. Я думаю, что такой индуктивный путь в нашем образовании совершенно необходим для того, чтобы наши студенты что-то понимали».
Далее Арнольд погрузился в конкретные формулировки основных математических определений, понятий и теорем, которые из-за формализма, присущего современной математике, не позволяют разглядеть в себе обыкновенные факты, физические законы, и поэтому не дают полноценной пищи, так необходимой мыслящему студенту. Он привел альтернативные формулировки, которые, на его взгляд, более полезны для понимания сущности понятия.
Palais de Découverte, Paris, 7 mars 1997
1997: atidengtas geografinį Europos centrą
žymintis akmuo tarp Purnuškių ir Bernotų kaimų. Šį centrą 1989 metais nustatė Prancūzijos nacionalinės geografijos institutas.
О ПРЕПОДАВАНИИ МАТЕМАТИКИ 1
Математика — часть физики. Физика — экспериментальная, естественная наука, часть естествознания. Математика — это та часть физики, в которой эксперименты дёшевы.
Тождество Якоби (вынуждающее высоты треугольника пересекаться в одной точке) — такой же экспериментальный факт, как то, что Земля кругла (т.е. гомеоморфна шару). Но обнаружить его можно с меньшими затратами.
В середине двадцатого века была предпринята попытка разделить математику и физику. Последствия оказались катастрофическими. Выросли целые поколения математиков, незнакомых с половиной своей науки и, естественно, не имеющих никакого представления ни о каких других науках. Они начали учить своей уродливой схоластической псевдоматематике сначала студентов, а потом и школьников (забыв о предупреждении Харди, что для уродливой математики нет постоянного места под Солнцем).
Поскольку ни для преподавания, ни для приложений в каких-либо других науках схоластическая, отрезанная от физики, математика не приспособлена, результатом оказалась всеобщая ненависть к математикам — и со стороны несчастных школьников (некоторые из которых со временем стали министрами), и со стороны пользователей.
Уродливое здание, построенное замученными комплексом неполноценности математиками-недоучками, не сумевшими своевременно познакомиться с физикой, напоминает стройную аксиоматическую теорию нечётных чисел. Ясно, что такую теорию можно создать и заставить учеников восхищаться совершенством и внутренней непротиворечивостью возникающей структуры (в которой определена, например, сумма нечётного числа слагаемых и произведение любого числа сомножителей). Чётные же числа с этой сектантской точки зрения можно либо объявить ересью, либо со временем ввести в теорию, пополнив её (уступая потребностям физики и реального мира) некоторыми «идеальными» объектами.
К сожалению, именно подобное уродливое извращённое построение математики господствовало в преподавании математики в течение десятилетий. Возникнув первоначально во Франции, это извращение быстро распространилось на обучение основам математики сперва студентов, а потом и школьников всех специальностей (сперва во Франции, а потом и в других странах, включая Россию).
Ученик французской начальной школы на вопрос «сколько будет 2+3» ответил: «3+2, так как сложение коммутативно». Он не знал, чему равна эта сумма, и даже не понимал, о чем его спрашивают!
Другой французский школьник (на мой взгляд, вполне разумный) определил математику так: «там есть квадрат, но это нужно ещё доказать».
По моему преподавательскому опыту во Франции, представление о математике у студентов (вплоть даже до обучающихся математике в École Normale Supérieure — этих явно неглупых, но изуродованных ребят мне жалко больше всего) — столь же убого, как у этого школьника.
Например, эти студенты никогда не видели параболоида, а вопрос о форме поверхности, заданной уравнением xy = z2, вызывает у математиков, обучающихся в ENS, ступор. Нарисовать на плоскости кривую, заданную параметрическими уравнениями (вроде x = t3 – 3t, y = t4 – 2t2) — задача совершенно невыполнимая для студентов (и, вероятно, даже для большинства французских профессоров математики).
Начиная с первого учебника анализа Лопиталя («анализ для понимания кривых линий») и примерно до учебника Гурса, умение решать подобные задачи считалось (наряду со знанием таблицы умножения) необходимой частью ремесла каждого математика.
Обиженные Богом ревнители «абстрактной математики» выбросили из преподавания всю геометрию (через которую в математике чаще всего осуществляется связь с физикой и реальностью). Учебники анализа Гурса, Эрмита, Пикара недавно были выброшены на свалку студенческой библиотекой Университетов Париж 6 и 7 (Жюсье) как устаревшие и потому вредные (только благодаря моему вмешательству удалось их спасти).
Студенты ENS, прослушавшие курсы дифференциальной и алгебраической геометрии (прочитанные уважаемыми математиками), оказались незнакомыми ни с римановой поверхностью эллиптической кривой y2 = x3 + ax + b, ни вообще с топологической классификацией поверхностей (не говоря уже об эллиптических интегралах первого рода и о групповом свойстве эллиптической кривой, т.е. о теореме сложения Эйлера–Абеля) — их учили лишь структурам Ходжа и якобиевым многообразиям!
Как могло сложиться такое положение во Франции, давшей миру Лагранжа и Лапласа, Коши и Пуанкаре, Лере и Тома? Мне кажется, разумное объяснение дал И. Г. Петровский, учивший меня в 1966 году: настоящие математики не сбиваются в шайки, но слабым шайки необходимы, чтобы выжить. Они могут объединяться по разным принципам (будь то сверхабстрактность, антисемитизм или «прикладная и индустриальная» проблематика), но сущностью всегда остаётся решение социальной проблемы — самосохранение в условиях более грамотного окружения.
Напомню, кстати, предостережение Л. Пастёра — никогда не существовало и не будет существовать никаких «прикладных наук», есть лишь приложения наук (весьма полезные!).
В те времена я относился к словам Петровского с некоторым сомнением, но теперь я всё более и более убеждаюсь, насколько он был прав. Значительная часть сверхабстрактной деятельности сводится просто к индустриализации беззастенчивого отнимания открытий у первооткрывателей и их систематическому приписыванию эпигонам-обобщателям. Подобно тому, как Америка не носит имя Колумба, математические результаты почти никогда не называются именами их открывателей.
Во избежание кривотолков должен заметить, что мои собственные достижения почему-то никогда не подвергались подобной экспроприации, хотя это постоянно случалось и с моими учителями (Колмогоровым, Петровским, Понтрягиным, Рохлиным) и с учениками. Проф. М. Берри сформулировал однажды следующие два принципа:
Принцип Арнольда. Если какое-либо понятие имеет персональное имя, то это — не имя первооткрывателя.
Принцип Берри. Принцип Арнольда применим к самому себе.
Вернусь, однако, к преподаванию математики во Франции.
Когда я учился на первом курсе мех.-мата МГУ, лекции по анализу читал теоретико-множественный тополог Л. А. Тумаркин, добросовестно пересказывающий старый классический курс анализа французского образца, типа Гурса. Он сообщил нам, что интегралы от рациональных функций вдоль алгебраической кривой берутся, если соответствующая риманова поверхность — сфера, и, вообще говоря, не берутся, если род её выше, и что для сферичности достаточно существования на кривой данной степени достаточно большого числа двойных точек (вынуждающих кривую быть уникурсальной: её вещественные точки можно нарисовать на проективной плоскости единым росчерком пера).
Эти факты настолько поражают воображение, что (даже сообщённые без всяких доказательств) дают большее и более правильное понятие о современной математике, чем целые тома трактата Бурбаки. Ведь мы узнаем здесь о существовании замечательной связи между вещами на вид совершенно различными: существованием явного выражения для интегралов и топологией соответствующей римановой поверхности, с одной стороны, а с другой стороны — между числом двойных точек и родом соответствующей римановой поверхности, проявляющемся вдобавок в вещественной области в виде уникурсальности.
Уже Якоби заметил, как самое восхитительное свойство математики, что в ней одна и та же функция управляет и представлениями целого числа в виде суммы четырёх квадратов, и истинным движением маятника.
Эти открытия связей между разнородными математическими объектами можно сравнить с открытием связи электричества и магнетизма в физике или сходства восточного берега Америки с западным берегом Африки в геологии.
Эмоциональное значение таких открытий для преподавания трудно переоценить. Именно они учат нас искать и находить подобные замечательные явления единства всего сущего.
Дегеометризация математического образования и развод с физикой разрывает эти связи. Например, не только студенты, но и современные алгебраические геометры в большинстве своем не знают об упомянутом здесь Якоби факте: эллиптический интеграл первого рода выражает время движения вдоль эллиптической фазовой кривой в соответствующей гамильтоновой динамической системе.
Перефразируя известные слова об электроне и атоме, можно сказать, что гипоциклоида столь же неисчерпаема, как идеал в кольце многочленов. Но учить идеалам студентов, никогда не видевших гипоциклоиды, столь же нелепо, как учить складывать дроби детей, никогда не разрезавших (хотя бы мысленно) на равные доли ни яблоко, ни пирог. Неудивительно, что дети предпочтут складывать числитель с числителем и знаменатель со знаменателем.
От моих французских друзей я слышал, что склонность к сверхабстрактным обобщениям является их традиционной национальной чертой. Я не исключаю, что здесь действительно идет речь о наследственной болезни, но всё же хотел бы подчеркнуть, что пример с яблоком и пирогом я заимствовал у Пуанкаре.
Схема построения математической теории совершенно такая же, как в любой естественной науке. Сначала мы рассматриваем какие-либо объекты и делаем в частных случаях какие-то наблюдения. Потом мы пытаемся найти пределы применимости своих наблюдений, ищем контрпримеры, предохраняющие от неоправданного распространения наших наблюдений на слишком широкий круг явлений (пример: числа разбиений последовательных нечётных чисел 1, 3, 5, 7, 9 на нечётное число натуральных слагаемых образуют последовательность 1, 2, 4, 8, 16, но за этими числами следует 29).
В результате мы по возможности чётко формулируем сделанное эмпирическое открытие (например, гипотезу Ферма или гипотезу Пуанкаре). После этого наступает трудный период проверки того, насколько надёжны полученные заключения.
Здесь в математике разработана специальная технология, которая, в применении к реальному миру, иногда полезна, а иногда может приводить и к самообману. Эта технология называется моделированием. При построении модели происходит следующая идеализация: некоторые факты, известные лишь с некоторой долей вероятия или лишь с некоторой точностью, признаются «абсолютно» верными и принимаются за «аксиомы». Смысл этой «абсолютности» состоит ровно в том, что мы позволяем себе оперировать с этими «фактами» по правилам формальной логики, объявляя «теоремами» всё то, что из них можно вывести.
Понятное дело, что ни в какой реальной деятельности полностью полагаться на подобные дедукции невозможно. Причиной является хотя бы то, что параметры изучаемых явлений никогда не бывают известными нам абсолютно точно, а небольшое изменение параметров (например, начальных условий процесса) может совершенно изменить результат. Скажем, по этой причине надёжный долгосрочный динамический прогноз погоды невозможен и останется невозможным, сколь бы ни совершенствовались компьютеры и регистрирующие начальные условия датчики.
Совершенно таким же образом небольшое изменение аксиом (в которых ведь мы точно уверены быть не можем) способно, вообще говоря, привести к иным выводам, чем дают выведенные из принятых аксиом теоремы. И чем длиннее и искуснее цепь выводов («доказательств»), тем менее надёжен окончательный результат.
Сложные модели редко бывают полезными (разве что для диссертантов).
Математическая технология моделирования состоит в том, чтобы от этой неприятности отвлечься и говорить о своей дедуктивной модели так, как если бы она совпадала с реальностью. Тот факт, что этот — явно неправильный с точки зрения естествознания — путь часто приводит к полезным результатам в физике, называют «непостижимой эффективностью математики в естественных науках» (или «принципом Вигнера»).
Здесь можно добавить замечание, принадлежащее И. М. Гельфанду: существует ещё один феномен, сравнимый по непостижимости с отмеченной Вигнером непостижимой эффективностью математики в физике — это столь же непостижимая неэффективность математики в биологии.
«Тонкий яд математического образования» (по выражению Ф. Клейна) для физика состоит именно в том, что абсолютизируемая модель отрывается от реальности и перестаёт с нею сравниваться. Вот самый простой пример: математика учит нас, что решение уравнения Мальтуса dx/dt = x однозначно определяется начальными условиями (т.е. что соответствующие интегральные кривые на плоскости (t, x) не пересекают друг друга). Этот вывод математической модели имеет мало отношения к реальности. Компьютерный эксперимент показывает, что все эти интегральные кривые имеют общие точки на отрицательной полуоси t. И действительно, скажем, кривые с начальными условиями x(0) = 0 и x(0) = 1 при t = –10 практически пересекаются, а при t = –100 между ними нельзя вставить и атома. Свойства пространства на столь малых расстояниях вовсе не описываются евклидовой геометрией. Применение теоремы единственности в этой ситуации — явное превышение точности модели. При практическом применении модели это надо иметь в виду, иначе можно столкнуться с серьёзными неприятностями.
Замечу, впрочем, что та же теорема единственности объясняет, почему заключительный этап швартовки корабля к пристани проводится вручную: при управлении, когда скорость причаливания определяется как гладкая (линейная) функция от расстояния, для причаливания потребовалось бы бесконечное время. Альтернативой является удар о причал (демпфируемый надлежащими неидеально упругими телами). Между прочим, с этой проблемой пришлось всерьёз столкнуться при посадке первых же спускаемых аппаратов на Луну и Марс, а также при причаливании к космическим станциям — здесь теорема единственности работает против нас.
К сожалению, ни подобные примеры, ни обсуждение опасности фетишизирования теорем не встречаются в современных учебниках математики, даже лучших. У меня даже создалось впечатление, что математики-схоласты (мало знакомые с физикой) верят в принципиальное отличие аксиоматической математики от обычного в естествознании моделирования (всегда нуждающегося в последующем контроле выводов экспериментом).
Не говоря уже об относительном характере исходных аксиом, нельзя забывать о неизбежности логических ошибок в длинных рассуждениях (скажем, в виде сбоя в компьютере, вызванного космическими лучами или квантовыми осцилляциями). Каждый работающий математик знает, что если не контролировать себя (лучше всего — примерами), то уже через какой-нибудь десяток страниц половина знаков в формулах будет переврана, а двойки из знаменателей проникнут в числители.
Технология борьбы с подобными ошибками — такой же внешний контроль экспериментами или наблюдениями, как и в любой экспериментальной науке, и ему следует с самого начала учить школьников младших классов.
Попытки создания «чистой» дедуктивно-аксиоматической математики привели к отказу от обычной в физике схемы (наблюдение — модель — исследование модели — выводы — проверка наблюдениями) и замена её схемой: определение — теорема — доказательство. Понять немотивированное определение невозможно, но это не останавливает преступных алгебраистов-аксиоматизаторов. Например, они были бы готовы определить произведение натуральных чисел при помощи правила умножения «столбиком». Коммутативность умножения становится при этом трудно доказываемой, но все же выводимой из аксиом теоремой. Эту теорему и её доказательство можно затем заставить учить несчастных студентов (с целью повысить авторитет как самой науки, так и обучающих ей лиц). Понятно, что ни такие определения, ни такие доказательства, ни для целей преподавания, ни для практической деятельности, ничего, кроме вреда, принести не могут.
Понять коммутативность умножения можно, только либо пересчитывая выстроенных солдат по рядам и по шеренгам, либо вычисляя двумя способами площадь прямоугольника. Попытки обойтись без этого вмешательства физики и реальности в математику — сектанство и изоляционизм, разрушающие образ математики как полезной человеческой деятельности в глазах всех разумных людей.
Раскрою ещё несколько подобных секретов (в интересах несчастных студентов).
Определитель матрицы — это (ориентированный) объём параллелепипеда, рёбра которого — её столбцы. Если сообщить студентам эту тайну (тщательно скрываемую в выхолощенном алгебраическом преподавании), то вся теория детерминантов становится понятной главой теории полилинейных форм. Если же определять детерминанты иначе, то у каждого разумного человека на всю жизнь останется отвращение и к определителям, и к якобианам, и к теореме о неявной функции.
Что такое группа? Алгебраисты учат, будто это множество с двумя операциями, удовлетворяющими куче легко забываемых аксиом. Это определение вызывает естественный протест: зачем разумному человеку такие пары операций? «Да пропади она пропадом, эта математика» — заключает студент (делающийся в будущем, возможно, министром науки).
Положение становится совершенно иным, если начать не с группы, а с понятия преобразования (взаимно-однозначного отображения множества в себя), как это и было исторически. Набор преобразований какого-либо множества называется группой, если вместе с любыми двумя преобразованиями он содержит результат их последовательного применения, а вместе с каждым преобразованием — обратное преобразование.
Вот и всё определение — так называемые «аксиомы» — это на самом деле (очевидные) свойства групп преобразований. То, что аксиоматизаторы называют «абстрактными группами» — это просто группы преобразований различных множеств, рассматриваемые с точностью до изоморфизма (взаимно-однозначного отображения, сохраняющего операции). Никаких «более абстрактных» групп в природе не существует, как это доказал Кэли. Зачем же алгебраисты до сих пор мучают студентов абстрактным определением?
Между прочим, в 1960-е годы я преподавал теорию групп московским школьникам. Избегая аксиоматики и оставаясь возможно ближе к физике, я за полгода дошёл до теоремы Абеля о неразрешимости общего уравнения пятой степени в радикалах (научив школьников попутно комплексным числам, римановым поверхностям, фундаментальным группам и группам монодромии алгебраических функций). Этот курс впоследствии был опубликован одним из слушателей, В. Алексеевым, в виде книги «Теорема Абеля в задачах».
Что такое гладкое многообразие? В недавней американской книге я прочёл, что Пуанкаре не был знаком с этим (введённым в математику им самим) понятием, и что «современное» определение дано лишь в конце1920-х годов Вебленом: многообразие — это топологические пространство, удовлетворяющее длинному ряду аксиом.
Что такое гладкое многообразие? В недавней американской книге я прочёл, что Пуанкаре не был знаком с этим (введённым в математику им самим) понятием, и что «современное» определение дано лишь в конце
За какие грехи вынуждены студенты продираться через все эти ухищрения? На самом деле в Analysis Situs Пуанкаре имеется совершенно явное определение гладкого многообразия, которое гораздо полезнее «абстрактного».
Гладкое k-мерное подмногообразие евклидова пространства RN — это его подмножество, которое в окрестности каждой своей точки представляет собой график гладкого отображения Rk в RN–k (где Rk и RN–k — координатные подпространства). Это — прямое обобщение самых обычных гладких кривых на плоскости (скажем, окружности x2 + y2 = 1) или кривых и поверхностей в трёхмерном пространстве.
Между гладкими многообразиями естественно определяются гладкие отображения. Диффеоморфизмы — это отображения, гладкие вместе со своими обратными.
«Абстрактное» гладкое многообразие — это гладкое подмногообразие какого-либо евклидова пространства, рассматриваемое с точностью до диффеоморфизма. Никаких «более абстрактных» конечномерных гладких многообразии в природе не существует (теорема Уитни). Зачем же мы до сих пор мучаем студентов абстрактным определением? Не лучше ли доказать им теорему о явной классификации двумерных замкнутых многообразий (поверхностей)?
Именно эта замечательная теорема (утверждающая, например, что всякая компактная связная ориентируемая поверхность — это сфера с некоторым числом ручек) даёт правильное представление о том, что такое современная математика, а вовсе не сверхабстрактные обобщения наивных подмногообразий евклидова пространства, не дающие на самом деле ничего нового и выдаваемые аксиоматизаторами за достижения.
Теорема о классификации поверхностей — математическое достижение высшего класса, сравнимое с открытием Америки или рентгеновских лучей. Это настоящее открытие математического естествознания, и даже трудно сказать, принадлежит ли сам факт математике или физике. По своему значению и для приложений, и для выработки правильного мировоззрения он далеко превосходит такие «достижения» математики, как решение проблемы Ферма или доказательство того, что всякое достаточно большое целое число представляется в виде суммы трёх простых чисел.
Ради рекламы современные математики иногда выдают подобные спортивные достижения за последнее слово своей науки. Понятно, что это не только не способствует высокой оценке математики обществом, а, напротив, вызывает здоровое недоверие к необходимости затраты усилий на занятия (типа скалолазания) этими экзотическими и неизвестно зачем и кому нужными вопросами.
Теорема о классификации поверхностей должна была бы входить в курсы математики средней школы (вероятно, без доказательства), но не входит почему-то даже в университетские курсы математики (из которых во Франции, впрочем, за последние десятилетия изгнана вообще вся геометрия).
Возвращение преподавания математики на всех уровнях от схоластической болтовни к изложению важной естественнонаучной области — особенно насущная задача для Франции. Для меня было удивительным, что студентам здесь практически неизвестны (и, кажется, не переводились на французский язык) все самые лучшие и важные в методическом отношении математические книги: «Числа и фигуры» Радемахера и Тёплица, «Наглядная геометрия» Гильберта и Кон-Фоссена, «Что такое математика» Куранта и Роббинса, «Как решать задачу» и «Математика и правдоподобные рассуждения» Полиа, «Лекции о развитии математики в XIX столетии» Ф. Клейна.
Я хорошо помню, какое сильное впечатление произвёл на меня в школьные годы курс анализа Эрмита (существующий, между прочим, в русском переводе!).
Римановы поверхности появлялись в нём, кажется, в одной из первых лекций (весь анализ был, конечно, комплексным, как это и должно быть). Асимптотики интегралов исследовались при помощи деформаций путей на римановых поверхностях при движении точек ветвления (теперь мы это назвали бы теорией Пикара–Лефшеца; Пикар, кстати, был зятем Эрмита — математические способности часто передаются зятьям: династия Адамар — П. Леви — Л. Шварц — У. Фриш — ещё один знаменитый пример в Парижской Академии наук).
«Устарелый» курс Эрмита столетней давности (вероятно, выкинутый ныне из студенческих библиотек французских университетов) был гораздо современнее, чем те скучнейшие учебники анализа, которыми теперь мучают студентов.
Если математики не обучаются сами, то потребители, сохранившие как нужду в современной в лучшем смысле слова математической теории, так и свойственный каждому здравомыслящему человеку иммунитет к бесполезной аксиоматической болтовне, в конце концов откажутся от услуг схоластов-недоучек и в университетах, и в школах.
Преподаватель математики, не одолевший хотя бы части томов курса Ландау и Лифшица, станет тогда таким же ископаемым, как сейчас — не знающий разницы между открытым и замкнутым множеством.
1) Расширенный текст выступления на дискуссии о преподавании математики в Palais de Découverte в Париже 7 марта 1997 г. назад к тексту
Užsisakykite:
Pranešimai (Atom)